Hydrostatic light-weight truss technology

Compressed by jpeg-recompress

A Hydrostatic truss uses pneumatic tubes in place of a conventional compression-loaded member.
Pochari Technologies is spearheading the pneumatic structure revolution. Although totally unknown to the public, it is possible to design structures that are far less material-intensive using internal pressure to carry loads. This elegant principle of loading a column in compression while not carrying the load in the walls through internal pressurization is extremely powerful and possesses a myriad of diverse applications. While inflatable structures have an impressive track record of providing extremely lightweight and rapidly deployable structures, they have yet to be used to achieve a high degree of rigidity. What is needed is a paradigm change in the nature of inflatable structure technology, this paradigm change is moving away from monolithic or monocoque style canvases that are only filled with air forming at best a big balloon. What is called for is a highly rigid member, as rigid as a steel column, but whose weight is a mere fraction.
Pochari Technologies is improving upon this technology by using pressurized cylinders to achieve the dynamic and structural properties of “pseudo” rigid members which can be used for both towers (*see page 1 on the drop-down menu), and to build trusses for horizontal load-bearing applications such as bridges or beams.
The impetus behind the design is the need to exploit the highly appealing material properties of many composite fibers (kevlar/aramid/glass fibers/vectran) which despite possessing poor compressive strength, boast immense tensile strength. If these fibers are loaded in hoop stress only, columns can be designed that bear load through transferring force onto the end pistons only. These rigid columns can then be assembled into a truss-like structure.
The weight of this truss technology compared to classic steel or even aluminum is greatly reduced, paving the way for all sorts of novel applications.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s